UDC 544.31

G.N. Shabanova, A.N. Korohodska, S.V. Levadna, O.A. Gamova

TRIANGULATION AND CHARACTERIZATION OF THE SUBSOLIDUS STRUCTURE IN THE SYSTEMS CaO-CoO-MoO₃, CoO-Al₂O₃-MoO₃ AND CaO-Al₂O₃-MoO₃

National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine

Three-component systems CaO-CoO-MoO₃, CoO-Al₂O₃-MoO₃ and CaO-Al₂O₃-MoO₃ are characterized in this work. The results of the research of the subsolidus structure of the systems under study are given. Diagrams of the systems in the field of the subsolidus are presented. The calculations of the changes of Gibbs free energy are performed at different temperatures for the model reactions. The thermodynamic and geometric topological calculations based on the developed thermodynamic database allow establishing the direction of solid-phase reactions in the three-component systems CaO-CoO-MoO₃, CoO-Al₂O₃-MoO₃ and CaO-Al₂O₃-MoO₃ with the participation of steadily existing compounds; as a result, all conodes in these systems have been determined. The main geometric topological calculations of elementary triangles and phases of systems are performed. Geometric topological system performance is important for the prediction of the accuracy of a dosage of components and the duration of their mixing before synthesis to obtain materials with the specified phase composition. The data on subsolidus structure of the considered three-component systems are essential for further forecasting phase structure of the aluminate cements fabricated with the use of the waste of cobalt catalysts that additionally contain molybdenum oxide.

Keywords: Gibbs energy; thermodynamic stability; combination of phases; triangulation; subsolidus structure; geometric topological calculations.

DOI: 10.32434/0321-4095-2019-127-6-268-274

Introduction

The cement industry is one of the leading sectors in the production of building materials. Among various construction materials and specialpurpose products, a large group of them is produced using alumina-containing raw materials. This group includes high-alumina products, corundum and alumina-mullite ceramics, aluminates and expanding cements. Aluminum oxide, depending on the purpose of the material, ensures refractoriness, considerable strength and durability in aggressive environments. Technical alumina or natural bauxite are most often used as starting alumina-containing materials. However, the scarcity of raw materials and highenergy intensity of technology restrain wide production and consumption of these high-quality materials.

At the same time, catalysts based on alumina are used in many processes of the chemical and petrochemical industry. There is a serious problem of reuse of the spent catalysts. The recuperation of the spent catalysts allows reducing the consumption of natural resources, significantly decreasing the cost of cement production and improving the environmental safety due to the waste disposal.

Results and discussion

It is possible to use a catalyst waste containing 86.8% Al_2O_3 , 2.5% CoO, 10.7% MoO₃ instead of alumina in the composition of the raw mix for alumina cement. However, the use of molybdenum-containing wastes requires the investigation of the structure of three-component systems containing molybdenum oxide, CaO-CoO-MoO₃, CoO-Al₂O₃-MoO₃ and CaO-Al₂O₃-MoO₃, to create the physicochemical basis for the development of aluminous cement compositions based on the abovementioned waste.

It is advisable to conduct a thermodynamic analysis of the processes that take place, which is possible only if the initial thermodynamic constants are known. We failed to find in the literature all thermodynamic constants concerning cobalt

© G.N. Shabanova, A.N. Korohodska, S.V. Levadna, O.A. Gamova, 2019

G.N. Shabanova, A.N. Korohodska, S.V. Levadna, O.A. Gamova

Table 1

Compound	$-\Delta H^{0}_{298}$,	S ⁰ ₂₉₈ ,	$C_p = a + bT + cT^{-2}$, J/mol·K			Temperature	Dof	
Compound	kJ/mol	J/mol·K	а	$b \cdot 10^3$	$-c \cdot 10^{-5}$	range, K	Kel.	
MoO ₃	745.6	77.74	86.73	21.67	17.49	298-1068	[2]	
α -Al ₂ O ₃	1675.6	50.92	114.77	12.8	35.44	298–2323	[3]	
CaO	635.55	39.75	48.83	4.52	6.53	298-2000	[3]	
CoO	238.9	52.97	48.28	8.535	-1.67	298-2000	[2]	
CaMoO ₄	1542.2	122.6	133.47	29.2	22.3	298-1718	[4]	
β-CoMoO ₄	1031.8	133.9	35.27	4.26	0	298–1453	[2; *]	
CoAl ₂ O ₄	1948.9	101.7	154.716	22.343	36.905	298-2233	[5]	

Initial thermodynamics data

Note: * – calculated values.

molybdate (CoMoO₄) and calcium molybdate (CaMoO₄). Therefore, the calculation of the initial thermodynamic values (the coefficients in the equations of heat capacity) was carried out by using the methods described elsewhere [1]. The results of the calculation of the initial thermodynamic data are shown in Table 1.

The CaO-CoO-MoO₃ system is poorly investigated, and there is practically no data in the literature on the full subsolidus structure of this system. The binary systems that make up this threecomponent system, CaO-CoO, CaO-MoO₃ and CoO-MoO₃ are examined in refs. [6,7]. In the CaO-MoO₃ system, there is one stable binary compound CaMoO₄. CaMoO₄ crystallizes in the scheelite structure, in which the central ion is coordinated by eight simply connected molybdate groups. The form of CaMoO₄ crystals is a tetragonal bipyramid, the lattice parameters are as follows: a=5.221 Å and c=11.425 Å [6]. Calcium molybdate melts congruently at 1445°C.

The CoO-MoO₃ system implies the formation of CoMoO₄, which exists in two polymorphic modifications. Reversible transformation $\alpha \rightarrow \beta$ is observed at the temperature of 400°C; β -CoMoO₄ melts congruently at 1180°C. The parameters of the crystal lattice of a low-temperature modification, α -CoMoO₄, are as follows: a=9.671 Å, b=8.852 Å and c=7.764 Å. The parameters of the crystal lattice of a high-temperature modification, β -CoMoO₄, are as follows: a=10.21 Å, b=9.32 Å and c=7.01 Å [8].

To determine the subsolidus structure of the CaO–CoO–MoO₃ system, the thermodynamic data given in Table 1 were used. The presence of only two binary compounds, calcium and cobalt molybdates, in the CaO–CoO–MoO₃ system suggests the following single exchange solid-phase reaction:

 $CaO+CoMoO_4=CoO+CaMoO_4$.

The thermodynamic evaluation of the change in Gibbs energy values was performed for the temperature range of 800–1400 K.

Because the calculated values of the function ΔG vs. T, shown in Table 2, have positive values, one can assert that the coexistence of the starting compounds is thermodynamically preferable, which ensures the presence of CaO-CoMoO₄ conodes in the subsolidus structure of this system.

Results of the calculation of the change in the Gibbs free energy for the reaction in the CaO–CoO–MoO₃ system

Temperature, K	Gibbs free energy, kJ/mol
800	327.33
900	314.36
1000	300.01
1100	284.39
1200	267.61
1300	249.75
1400	230.87

Based on the result of the triangulation of the three-component CaO–CoO–MoO₃ system, it was established that it is divided into 3 elementary triangles (Fig. 1), which corresponds to the Kurnakov rule [9].

Thermodynamic data presented in Table 1 were used for the analysis of the exchange reactions in the system $CoO-Al_2O_3-MoO_3$. The presence of two binary compounds in the three-component $CoO-Al_2O_3-MoO_3$ system and the absence of any ternary compounds predetermine its splitting according to the results of the calculation of the direction of the following reaction:

 $Al_2O_3 + CoMoO_4 = MoO_3 + CoAl_2O_4.$

To establish the probable pairs of coexisting phases, the values of the change in the Gibbs energy

Triangulation and characterization of the subsolidus structure in the systems $CaO-CoO-MoO_3$, $CoO-Al_2O_3-MoO_3$ and $CaO-Al_2O_3-MoO_3$

Fig. 1. The structure of the three-component $CaO-CoO-MoO_3$ system in the subsolidus region

vs. the temperature were calculated (Table 3).

Results of the calculation of the change in the Gibbs free energy for the reaction in the CoO-Al₂O₃-MoO₃ system

Temperature, K	Gibbs free energy, kJ/mol
800	1475.36
900	1463.91
1000	1451.14
1100	1437.16
1200	1422.08
1300	1405.94
1400	1388.83

When analyzing this reaction, the coexistence of MoO_3 and $CoAl_2O_4$ is less thermodynamically advantageous than of Al_2O_3 and $CoMoO_4$ as follows from the positive values of ΔG . The closure of the Al_2O_3 -CoMoO₄ conode leads to the existence of the $CoMoO_4$ -CoAl₂O₄ conodes without any alternatives from the geometric-topological principles of the closure of triangles.

The results of the thermodynamic study allow performing the triangulation of the three-component $CoO-Al_2O_3-MoO_3$ system, the subsolidus structure of which is shown in Fig. 2.

Thus, it was found that the three-component $CoO-Al_2O_3-MoO_3$ system is divided by two stable conodes into 3 elementary triangles, which corresponds to the Kurnakov rule.

Despite some available information about the binary subsystems that make up the three-component system $CaO-Al_2O_3-MoO_3$, there is no information about their full structures. In this regard, the issue of studying the structure of the $CaO-Al_2O_3-MoO_3$

Fig. 2. Subsolidus structure of the CoO-Al₂O₃-MoO₃ system

system in the field of subsolidus is very important. For the of the subsolidus structure of this system, the thermodynamic data given in Table 1 were used.

The thermodynamic analysis of the subsolidus structure of the three-component system under study was carried out by analyzing the changes in the Gibbs energy for the temperature range of 800 K to the temperatures of phase transition of the compounds involved in the reactions according to the procedure described in ref. [3] for the following model exchange reactions:

1. $CaAl_{12}O_{19}+MoO_3=CaMoO_4+6Al_2O_3$ 2. $CaAl_4O_7 + MoO_3 = CaMoO_4 + 2Al_2O_3$ 3. $3CaAl_4O_7 + 2MoO_3 = 2CaMoO_4 + CaAl_{12}O_{19}$ 4. $CaAl_2O_4 + MoO_3 = CaMoO_4 + Al_2O_3$ 5. $6CaAl_2O_4 + 5MoO_3 = 5CaMoO_4 + CaAl_{12}O_{19}$ 6. $2CaAl_2O_4 + MoO_3 = CaMoO_4 + CaAl_4O_7$ 7. $Ca_{12}Al_{14}O_{33}+12MoO_{3}=12CaMoO_{4}+7Al_{2}O_{3}$ 8. $6Ca_{12}Al_{14}O_{33}+65MoO_3=$ $=65CaMoO_4+7CaAl_{12}O_{19}$ 9. $2Ca_{12}Al_{14}O_{33}+17MoO_{3}=$ =17CaMoO₄+7CaAl₄O₇ 10. $Ca_{12}Al_{14}O_{33}+5MoO_{3}=5CaMoO_{4}+7CaAl_{2}O_{4}$ 11. $Ca_3Al_2O_6+3MoO_3=3CaMoO_4+Al_2O_3$ 12. $6Ca_{3}Al_{2}O_{6}+17MoO_{3}=$ $=17CaMoO_4+CaAl_{12}O_{19}$ 13. $2Ca_{3}Al_{2}O_{6}+5MoO_{3}=5CaMoO_{4}+CaAl_{4}O_{7}$ 14. $Ca_{3}Al_{2}O_{6}+2MoO_{3}=2CaMoO_{4}+CaAl_{2}O_{4}$ 15. $7Ca_{3}Al_{2}O_{6}+9MoO_{3}=9CaMoO_{4}+Ca_{12}Al_{14}O_{33}$

The results of calculation are given in Table 4. Analysis of the obtained data shows that the $CaMoO_4$ and Al_2O_3 phases coexist in the system (reaction (1)), which determines the presence of this conode in the system under consideration. Analysis

Table 4

No.	Gibbs free energy, kJ/mol						
	800 K	1000 K	1200 K	1400 K	1600 K	1700 K	
1	-195.58	-186.13	-172.47	-155.01	-134.04	-122.30	
2	-120.02	-115.09	-110.56	-106.44	-102.73	-101.02	
3	-164.47	-159.14	-159.22	-164.32	-174.14	-180.76	
4	-132,05	-128.87	-125.29	-121.24	-116.66	-114.15	
5	-596,72	-587.08	-579.29	-572.44	-565.90	-562.59	
6	-144.08	-142.65	-140.02	-136.04	-130.59	-127.28	
7	-1784.41	-1772.78	-1761.75	-1750.52	-1738.53	_	
8	-9337.43	-9333.78	-9363.20	-9418.02	-9492.91	—	
9	-2728.72	-2739.94	-2749.56	-2755.94	-2757.97	_	
10	-860.07	-879.71	-884.70	-901.82	-921.94	_	
11	-489.20	-485.86	-482.94	-480.49	-478.52	-477.73	
12	-2739.60	-2729.03	-2725.19	-2727.92	-2737.10	-2744.08	
13	-858.38	-856.63	-855.32	-854.53	-854.32	-854.44	
14	-357.15	-356.99	-357.65	-359.25	-361.87	-363.58	
15	-1639.96	-1628.24	-1618.86	-1612.90	-1611.13	_	

Results of the calculation of the Gibbs energy change for the corresponding model reactions in the CaO-Al₂O₃-MoO₃ system

of the reactions (2) and (3) reveals the closure of the CaMoO₄ conodes, CaAl₁₂O₁₉. In connection with the established stability, the CaMoO₄–CaAl₁₂O₁₉ conodes in the analyzed system determine the existence of the following conodes: CaAl₄O₇–CaMoO₄, CaAl₂O₄–CaMoO₄, Ca₁₂Al₁₄O₃₃–CaMoO₄ and Ca₃Al₂O₆–CaMoO₄ (from the geometric-topological principles of triangulation). The subsolidus structure of the CaO–Al₂O₃–MoO₃ system is depicted in Fig. 3.

Thus, it was stated that the three-component

system $CaO-Al_2O_3-MoO_3$ is divided by six stable compounds into seven elementary triangles, which corresponds to the Kurnakov rule.

The geometrical-topological characteristics of the CaO-CoO-MoO₃, CoO-Al₂O₃-MoO₃ and CaO-Al₂O₃-MoO₃ systems (i.e. the length of tie lines, the area of elementary triangles and the probability of existence of phases) were determined by the procedure given in ref. [9] (Tables 5–7).

In the CaO-CoO-MoO₃ and CoO-Al₂O₃-

Table 5

No.	Length of tie lines	L, relative units				
	CaO–CoO–MoO ₃					
1	CoMoO ₄ –CaO	0.88032				
2	CoMoO ₄ -CaMoO ₄	0.315601				
	CoO–Al ₂ O ₃ –MoO ₃					
1	Al ₂ O ₃ CoMoO ₄	0.88032				
2	CoMoO ₄ –CoAl ₂ O ₄	0.6212				
	CaO–Al ₂ O ₃ –Moo	O_3				
1	Ca ₃ Al ₂ O ₆ –CaMoO ₄	0.6238				
2	Ca ₁₂ Al ₁₄ O ₃₃ –CaMoO ₄	0.6424				
3	CaAl ₂ O ₄ CaMoO ₄	0.6857				
4	CaAl ₄ O ₇ –CaMoO ₄	0.7542				
5	CaAl ₁₂ O ₁₉ -CaMoO ₄	0.8354				
6	Al ₂ O ₃ CaMoO ₄	0.8935				

Triangulation and characterization of the subsolidus structure in the systems $CaO-CoO-MoO_3$, $CoO-Al_2O_3-MoO_3$ and $CaO-Al_2O_3-MoO_3$

No.	Elementary triangle	Area, rel. units	Degree of asymmetry		
CaO–CoO–MoO ₃					
1	CaO–CoMoO ₄ –CoO	0.6580	1.52		
2	CaO–CoMoO ₄ –CaMoO ₄	0.2462	2.79		
3	CoMoO ₄ CaMoO ₄ MoO ₃	0.0958	1.08		
Total		1.0000	_		
Max		0.6580	2.79		
Min		0.0958	1.08		
	CoO-	-Al ₂ O ₃ -MoO ₃	_		
1	CoO–CoAl ₂ O ₄ –CoMoO ₄	0.3793	1.14		
2	CoAl ₂ O ₄ CoMoO ₄ Al ₂ O ₃	0.2787	2.08		
3	Al ₂ O ₃ -CoMoO ₄ -MoO ₃	0.3420	2.92		
Total		1.0000	—		
Max		0.3793	2.92		
Min		0.2787	1.14		
	CaO-	-Al ₂ O ₃ -MoO ₃			
1	CaO–Ca ₃ Al ₂ O ₆ –CaMoO ₄	0.2717	1.91		
2	$Ca_3Al_2O_6$ - $Ca_{12}Al_{14}O_{33}$ - $CaMoO_4$	0.0989	4.68		
3	Ca ₁₂ Al ₁₄ O ₃₃ -CaAl ₂ O ₄ -CaMoO ₄	0.0940	5.25		
4	CaAl ₂ O ₄ CaAl ₄ O ₇ CaMoO ₄	0.1001	5.42		
5	CaAl ₄ O ₇ CaAl ₁₂ O ₁₉ CaMoO ₄	0.0948	6.34		
6	CaAl ₁₂ O ₁₉ -Al ₂ O ₃ -CaMoO ₄	0.0605	10.64		
7	CaMoO ₄ -Al ₂ O ₃ -MoO ₃	0.2800	3.57		
Total		1.0000	_		
Max		0.2800	10.64		
Min]	0.2787	1.91		

Characteristics of elementary triangles in the systems CaO-CoO-MoO₃, CoO-Al₂O₃-MoO₃ and CaO-Al₂O₃-MoO₃

 MoO_3 systems, the presence of only two tie lines automatically determines the longest and shortest tie lines. For the CaO-Al₂O₃-MoO₃ system, the Al₂O₃-CaMoO₄ (0.8935 rel. units) has the greatest length, while Ca₃Al₂O₆-CaMoO₄ (0.623 rel. units) has the shortest length.

It can be seen from the obtained results that the elemental area of existence has the largest CaO– CoMoO₄–CoO triangle (0.658 rel. units) in the CaO–CoO–MoO₃ system, whereas the CoMoO₄– CaMoO₄–MoO₃ triangle is the smallest one (0.0958 rel. units). When analyzing the degree of asymmetry of triangles, it was established that the elementary triangle CoMoO₄–CaMoO₄–MoO₃ is distinguished by the least degree of asymmetry in the system. CoMoO₄ (0.3333 rel. units), CaO (0.3015 rel. units) and CoO (0.2193 rel. units), which are the parts of the triangle with the largest area, have the highest probability of existence in this system.

In the CoO $-Al_2O_3-MoO_3$ three-component system, the CoO $-CoAl_2O_4-CoMoO_4$ triangle (0.3793 rel. units) has a maximum area, while the CoAl_2O_4-CoMoO_4-Al_2O_3 triangle (0.2787 rel. units)

has a minimum area. The $CoMoO_4$ phase (0.3333 rel. units) has the highest probability of existence, and the MoO_3 phase has the lowest one (0.114 rel. units).

Table 6

In the CaO–Al₂O₃–MoO₃ system, the largest area is occupied by the triangle CaMoO₄–Al₂O₃– MoO₃ (0.28 rel. units), whereas the smallest area is occupied by the triangle CaAl₁₂O₁₉–Al₂O₃ – CaMoO₄ (0.0605 rel. units). The greatest degree of asymmetry shows the triangle CaAl₁₂O₁₉–Al₂O₃–CaMoO₄ (10.64), the smallest degree of asymmetry is revealed for the triangle CaO–Ca₃Al₂O₆–CaMoO₄ (1.91). The highest probability of existence is determined for CaMoO₄ (0.3333 rel. units), while the smallest one is observed for CaAl₁₂O₁₉ (0.0518 rel. units).

Conclusions

According to the results of the thermodynamic and geometrical-topological analysis of the threecomponent systems, it was established that the molybdenum compounds, $CaMoO_4$ and $CoMoO_4$, have the highest probabilities of the formation, and therefore they are characterized by the highest thermodynamic stability. The coexistence of these

273

Table 7

Commonwed	Number of phases with	Number of triangles in	Area of existence, rel.	Probability of existence,
Compound	which it coexists	which it is present	units	rel. units
		CaO–CoO–MoC	$\hat{\mathbf{b}}_3$	
MoO ₃	2	1	0.0958	0.0319
CaO	3	2	0.9042	0.3015
CoO	2	1	0.6580	0.2193
CaMoO ₄	3	2	0.3420	0.1140
CoMoO ₄	4	3	1.0000	0.3333
Total			3.0000	1.0000
Max			1.0000	0.3333
Min			0.0958	0.0319
		CoO-Al ₂ O ₃ -MoO	O_3	
MoO ₃	2	1	0.3420	0.114
Al ₂ O ₃	3	2	0.6207	0.2069
CoO	2	1	0.3793	0.1264
CoAl ₂ O ₄	3	2	0.6580	0.2194
CoMoO ₄	4	3	1.0000	0.3333
Total			3.0000	1.0000
Max			1.0000	0.3333
Min			0.3420	0.1140
		CaO–Al ₂ O ₃ –MoO	D ₃	
MoO ₃	2	1	0.28	0.0906
Al ₂ O ₃	3	2	0.3405	0.1135
CaO	2	1	0.2717	0.1264
$Ca_3Al_2O_6$	3	2	0.3706	0.1235
$Ca_{12}Al_{14}O_{33}$	3	2	0.1928	0.0643
CaAl ₂ O ₄	3	2	0.1941	0.0647
CaAl ₄ O ₇	3	2	0.1950	0.0650
CaAl ₁₂ O ₁₉	3	2	0.1553	0.0518
CaMoO ₄	8	7	1.0000	0.3333
Total			3.0000	1.0000
Max			1.0000	0.3333
Min			0.1553	0.0518

Geometric-topological characteristics of the phases in the systems CaO-CoO-MoO₃, CoO-Al₂O₃-MoO₃ and CaO-Al₂O₃-MoO₃

compounds with refractory cobalt spinel (CoAl₂O₄) and calcium aluminates (Ca₃Al₂O₆, Ca₁₂Al₁₄O₃₃ and CaAl₂O₄) allows fabricating refractory cements based on spent cobalt-molybdenum catalysts and creating resource-saving technologies for their production.

The determination of the subsolidus structure of the considered three-component systems is important for the further prediction of the phase composition of aluminate cements obtained using waste cobalt catalysts that additionally contain molybdenum oxide.

REFERENCES

1. Khimichna tekhnologiya tugoplavkykh nemetalevykh i

sylikatnykh materialiv u prykladakh i zadachakh / Fedorenko O.Yu., Pitak Ya.M., Ryshchenko M.I., et al. – Kharkiv: Pidruchnyk NTU «KhPI», 2013. – Ch. 2. Fizyko-khimichni systemy, fazovi rivnovagy, termodynamika, resurso- ta energozberezhennya v tekhnologiyi TNSM. – 326 p.

2. JANAF thermochemical tables. Third Edition / Chase Jr.M.W., Davies C.A., Downey J.R., Frurip D.J., McDonald R.A., Syverud A.N. – Washington: American Chemical Society, 1986. – 1856 p.

3. Logvinkov S.M. Tverdofaznye reaktsii obmena v tekhnologii keramiki. – Hharkov: Izd. HNEU, 2013. – 248 p.

4. *Binnewies M., Milke E.* Thermochemical data of elements and compounds, 2rd Edition. – Weinheim: Wiley-VCH Verlag GmbH, 2002. – 928 p.

5. *Termodinamicheskie* konstanty nekotorykh soedinenii sistemy CaO-Al₂O₃-CoO / A.N. Korohodskaya, G.N.

Triangulation and characterization of the subsolidus structure in the systems $CaO-CoO-MoO_3$, $CoO-Al_2O_3-MoO_3$ and $CaO-Al_2O_3-MoO_3$ Shabanova, S.V. Levadnaya, T.V. Shkolnikova // Visnyk Nats. tekhn. un-ta «KhPI». – 2017. – No. 48(1269). – P.98-101.

6. *Ropp R.C.* Encyclopedia of the alkaline earth compounds. - Amsterdam: Elsevier, 2013. - 1187 p.

7. *Nanostructured* materials for advanced technological applications / J.P. Reithmaier, P. Petkov, W. Kulisch, C. Popov. – Dordrecht (Netherland): Springer, 2009. – 546 p.

8. Crystal structure of cobalt molybdate hydrate CoMoO₄ \cdot nH₂O / Eda K., Uno Y., Nagai N., Sotani N., Whittingham M.S // J. Solid State Chem. – 2005. – Vol.178. – P.2791-2797.

9. *Fizikokhimicheskie* sistemy tugoplavkikh nemetallicheskikh i silikatnykh materialov / A.S. Berezhnoj, Ya.N. Pitak, A.D. Ponomarenko, N.P. Sobol'. – Kyiv: UMK VO Publ., 1992. – 172 p.

Received 11.04.2019

ТРІАНГУЛЯЦІЯ І ХАРАКТЕРИСТИКА СУБСОЛІДУСНОЇ БУДОВИ СИСТЕМ СаО-СоО-МоО₃, СоО-Аl₂O₃-MoO₃ ТА СаО-Al₂O₃-MoO₃

Г.М. Шабанова, А.М. Корогодська, С.В. Левадна, О.О. Гамова

У статті наведені характеристики трикомпонентних систем CaO-CoO-MoO₃, CoO-Al₂O₃-MoO₃ та CaO-Al₂O₃-MoO₃. Надані результати дослідження субсолідусної будови цих систем. Розроблені графічні зображення систем в області субсолідуса. Наведено результати розрахунку зміни вільної енергії Гіббса при різних температурах для модельних реакцій. В результаті виконаних термодинамічних і геометро-топологічних розрахунків на основі сформованої термодинамічної бази даних встановлена спрямованість протікання твердофазних реакцій в трикомпонентних системах $CaO-CoO-MoO_3$, $CoO-Al_2O_3-MoO_3$, $CaO-Al_2O_3-MoO_3$ за участю стабільно існуючих сполук, що дозволило визначити всі коноди даних систем. Розраховані основні геометро-топологічні характеристики елементарних трикутників і фаз систем. Геометро-топологічні характеристики системи важливі для прогнозування ступеня точності дозування компонентів, а також необхідного часу їх змішування перед синтезом матеріалів із заданим фазовим складом. Субсолідусна будова розглянутих трикомпонентних систем має значення для подальшого прогнозування фазового складу алюмінатних цементів, які одержують з використанням відходів кобальтових каталізаторів, що містять додатково оксид молібдену.

Ключові слова: енергія Гіббса, термодинамічна стабільність, комбінація фаз, тріангуляція, субсолідусна будова, геометро-топологічні характеристики.

TRIANGULATION AND CHARACTERIZATION OF THE SUBSOLIDUS STRUCTURE IN THE SYSTEMS CaO-CoO-MoO₃, CoO-Al,O₃-MoO₃ AND CaO-Al,O₃-MoO₃

G.N. Shabanova^{*}, A.N. Korohodska, S.V. Levadna, O.A. Gamova

National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine

* e-mail: gala-shabanova@ukr.net

Three-component systems CaO-CoO-MoO₃, CoO-Al₂O₃- MoO_3 and $CaO-Al_2O_3-MoO_3$ are characterized in this work. The results of the research of the subsolidus structure of the systems under study are given. Diagrams of the systems in the field of the subsolidus are presented. The calculations of the changes of Gibbs free energy are performed at different temperatures for the model reactions. The thermodynamic and geometric topological calculations based on the developed thermodynamic database allow establishing the direction of solid-phase reactions in the three-component systems $CaO-CoO-MoO_3$, $CoO-Al_2O_3-MoO_3$ and $CaO-Al_2O_3-MoO_3$ with the participation of steadily existing compounds; as a result, all conodes in these systems have been determined. The main geometric topological calculations of elementary triangles and phases of systems are performed. Geometric topological system performance is important for the prediction of the accuracy of a dosage of components and the duration of their mixing before synthesis to obtain materials with the specified phase composition. The data on subsolidus structure of the considered three-component systems are essential for further forecasting phase structure of the aluminate cements fabricated with the use of the waste of cobalt catalysts that additionally contain molybdenum oxide.

Keywords: Gibbs energy; thermodynamic stability; combination of phases; triangulation; subsolidus structure; geometric topological calculations.

REFERENCES

1. Fedorenko O.Yu., Pitak Ya.M., Ryshchenko M.I. Shhukina L.P., Bragina L.L., Lisachuk G.V., Taranenkova V.V., Shabanova G.M., Korogods'ka A.M., Savvova O.V., Sobol' Yu.O., Voronov G.K., Shalygina O.V., *Khimichna tekhnologiya tugoplavkykh nemetalevykh i sylikatnykh materialiv u prykladakh i zadachakh* [Chemical technology of refractory nonmetallic and silicate materials in examples and tasks]. NTU «KhPI» Publishers, Kharkiv, 2013. 326 p. (*in Ukrainian*).

2. Chase Jr.M.W., Davies C.A., Downey J.R., Frurip D.J., McDonald R.A., Syverud A.N., *JANAF Thermochemical tables. Third Edition*. American Chemical Society, Washington, 1986. 1856 p.

3. Logvinkov S.M., *Tverdofaznye reaktsii obmena v tekhnologii keramiki* [Solid-phase exchange reactions in ceramic technology]. HNEU Publishers, Kharkiv, 2013. 248 p. (*in Russian*).

4. Binnewies M., Milke E., *Thermochemical data of elements and compounds, 2nd Edition*. Wiley-VCH Verlag GmbH, Weinheim, 2002. 928 p.

5. Korohodska A.N., Shabanova G.N., Levadnaya S.V., Shkolnikova T.V. Termodinamicheskie konstanty nekotorykh soedinenii sistemy CaO-Al₂O₃-CoO [Thermodynamic constants of some compounds of the CaO-Al₂O₃-CoO system]. *Visnyk Natsional'nogo Tekhnichnogo Universyteta NTU «KhPI»*, 2017, no. 48 (1269), pp. 98-101. (*in Russian*).

6. Ropp R.C., *Encyclopedia of the alkaline earth compounds*. Elsevier, Amsterdam, 2013. 1187 p.

7. Reithmaier J.P., Petkov P., Kulisch W., Popov C. Nanostructured materials for advanced technological applications. Springer, Dordrecht, 2009. 546 p.

8. Eda K., Uno Y., Nagai N., Sotani N., Whittingham M.S. Crystal structure of cobalt molybdate hydrate $CoMoO_4 \cdot nH_2O$. *Journal of Solid State Chemistry*, 2005, vol. 178, pp. 2791-2797.

9. Berezhnoj A.S., Pitak Ya.N., Ponomarenko A.D., Sobol' N.P., *Fizikokhimicheskie sistemy tugoplavkikh nemetallicheskikh i silikatnykh materialov* [Physicochemical systems of refractory, nonmetallic and silicate materials]. UMK VO Publishers, Kyiv, 1992. 172 p. (*in Russian*).