УДК 552.573:66.094.7:543.573

В.А. Кучеренко, Ю.В. Тамаркина, И.Б. Фролова

ТЕРМОЛИЗ АНТРАЦИТОВ В ПРИСУТСТВИИ ГИДРОКСИДОВ ЩЕЛОЧНЫХ МЕТАЛЛОВ

Институт физико-органической химии и углехимии им. Л.М. Литвиненко НАН Украины, г. Киев

Исследован термолиз (d≤500°C) пяти антрацитов АН (С 94,6-95,6%), импрегнированных гидроксидами МОН (M=Li, Na, K, Rb, Cs) при соотношениях МОН/АН R_{мон}≤20 ммоль/г. Методом термопрограммируемой (5 град/мин, дериватограф ОD-103 МОМ) гравиметрии определены потеря веса Δm как выход летучих продуктов и скорости их образования ω_m. Установлено, что при нагревании АН и соединений «АН-МОН» наблюдается термодегидратация (d≤200°C) и образование (>250°C) летучих органических продуктов (ЛОП) в результате параллельного протекания термической и щелочной деструкции. Термодегидратация не зависит от типа АН, но зависит от МОН и проявляется тремя пиками при 82-92°C, 138-147°C и 158-160°С, отнесенными к H₂O ассоциированной с: (1) органическим угольным веществом, (2) молекулами МОН и (3) комплексами «М⁺-*π*-система полиарена». Для всех антрацитов действие МОН наблюдается при 250-500°С (R_{мон}d≤2 ммоль/г) и приводит к повышению выхода ЛОП (от 1% до 5-6%) и снижению эффективной энергии активации (с 230-250 до 110-170 кДж/моль). Для оценки вклада щелочной термодеструкции предложено использовать разность скоростей $\Delta \omega_{m} = \omega_{m}(AH - MOH) - \omega_{m}(AH)$. Полученные данные показали, что (1) щелочь промотирует термодеструкцию, (2) максимум величины Δω_m и начало образования ЛОП понижается на 50-80°C, (3) реакционная способность щелочей возрастает в ряду LiOH<NaOH<KOH<RbOH<CsOH. Ускорение деструкции с увеличением размеров и поляризуемости М⁺ объяснено усилением структурного разупорядочения антрацита и повышением доступности внутрикаркасных реакционных центров для щелочного реагирования.

Ключевые слова: антрацит, гидроксид щелочного металла, импрегнирование, термолиз, летучие органические продукты.

Введение

Термолиз антрацитов с гидроксидами щелочных металлов МОН (щелочная активация) - один из наиболее эффективных способов их конверсии в активированные угли (АУ) с высокоразвитой пористой структурой, высоким выходом (і50%) и наилучшими прочностными характеристиками [1-6]. Из антрацитов разных месторождений получены АУ с максимальными величинами S_{BET} , составляющими 3290 м²/г [1], 2260 M^2/Γ [3], 2890 M^2/Γ [4], 2480 M^2/Γ [5], 2060 м²/г [6]. АУ с такими свойствами образуются при больших весовых соотношениях МОН/антрацит (R_{мон}), достигающих 7 г/г [4], но обычно составляющих R_{мон}=2-4 г/г [1-3,5,6]. Это – значительные количества МОН, которые неизбежно создают большие объемы

щелочных стоков при выделении АУ, что усложняет технологический процесс и экологически неприемлемо.

Простое уменьшение количества щелочи при активации антрацитов (снижение соотношения R_{MOH}) приводит к материалам с невысокими величинами удельной поверхности, например, уменьшение R_{KOH} от 4 г/г до 1 г/г снижает S_{BET} от 3290 м²/г до 726 м²/г [1], а изменение R_{NaOH} от 4 г/г до 1 г/г уменьшает S_{BET} от 2480 м²/г до 944 м²/г [5].

С очевидностью формулируется задача поиска метода развития поверхности АУ при использовании щелочей в небольших количествах, в идеале, близких к каталитическим. Для ее решения необходимы более подробные исследование термоинициируемых процессов, происхо-

Thermolysis of anthracites with alkali metal hydroxides

[©] В.А. Кучеренко, Ю.В. Тамаркина, И.Б. Фролова, 2018

дящих при нагревании антрацитов с МОН в области малых соотношений R_{мон}≤1 г/г. Исследования в этой области выявили ряд неизвестных фактов. Например, в условиях щелочной активации (800°C, активатор – КОН) бурого угля обнаружена область доминирования конденсационных процессов при R_{кон}≤4 ммоль/г, ведущее к повышению выхода АУ с синхронным снижением величины S_{вет} [7]. Изучение термолиза (≤500°С) древесины с КОН методом термогравиметриии выявило область (R_{кон} ≤0,1 ммоль/г) щелочного катализа образования летучих продуктов и область (R_{кон}≤0,18-0,25 ммоль/г), в которой суммируются эффекты катализа и структурной реорганизации органического каркаса при импрегнировании [8]. Ранее установлено, что уже на стадии щелочного импрегнирования происходит структурная реорганизация антрацита, глубина которой возрастает в ряду гидроксидов

LiOH<NaOH<KOH<RbOH<CsOH [9].

Данная работа посвящена исследованию термодеструкции антрацитов, импрегнированных гидроксидами щелочных металлов. Мы ограничились, в основном, небольшими значениями R_{мон}, поскольку работа в перспективе ориентирована на разработку процесса щелочной активации, в ходе которой возможно получение АУ со столь же высокоразвитой поверхностью, но при малых соотношениях щелочь/уголь.

Экспериментальная часть

В работе изучены антрациты Донецкого угольного бассейна с размером частиц 0,16– 0,25 мм. Условные индексы образцов и содержание углерода (приведено в скобках) следующие: А1 (94,6%), А2 (95,1%), А3 (95,2%), А4 (95,2%), А5 (95,6%). Более подробная характеристика антрацитов опубликована ранее [9].

Щелочную обработку антрацитов выполняли импрегнированием: высушенный образец (10 г) смешивали с водным раствором МОН, выдерживали 24 ч при комнатной температуре и сушили до постоянного веса ($110\pm5^{\circ}$ С). Количество и концентрация щелочного раствора выбрано таким образом, чтобы обеспечить заданное весовое соотношение МОН/антрацит R_{мон}, ммоль/г. Импрегнированные антрациты условно названы как соединения «антрацит— МОН (R_{мон})», например «A4—CsOH(2)» означает образец антрацита A4, импрегированного гидроксидом цезия при R_{мон}=2 ммоль/г. В холостом опыте антрацит обработан водой в тех же условиях.

Термогравиметрию антрацитовых образцов осуществляли в среде аргона с помощью дериватографа OD-103 МОМ при скоростях подъема температуры 5 град/мин. Образец (0,30±0,03 г) помещали слоем ~1 мм на тарельчатый тигель из шести вертикально расположенных тарелок, что обеспечивало быстрый отвод газообразных продуктов. Регистрируемые прибором кривые потери веса ∆m-t (ТГ-кривые) и скорости потери массы ω_m-t (ДТГ-кривые) рассчитывали на 1 г исходного антрацита и выражали как температурные зависимости. В данной работе параметры Δm и ω_m эквивалентны выходу и скорости образования летучих продуктов термолиза, соответственно. При этом постулировано, что изменение веса МОН в исследуемом интервале температур (≤500°С) не происходит. Вычитанием ДТГ-кривой исходного антрацита из ДТГ-кривой соединения «антрацит-МОН» вычисляли температурные зависимости разности скоростей $\Delta \omega_m$, мг/г·с. Этот параметр позволяет выделять эффекты, обусловленные только присутствием щелочи.

Результаты и обсуждение

При нагревании антрацитов и соединений «антрацит-МОН» до 500°С наблюдается термодегидратация (≤200°С) и выделение (≥250°С) летучих органических продуктов (ЛОП) в результате параллельного протекания термической и щелочной деструкции. Описываемый зависимостями Δm-t, ω_m -t и $\Delta \omega_m$ -t характер термолиза определяется весовым соотношением МОН/антрацит и свойствами гидроксида щелочного металла.

Влияние соотношения R_{мон} на термодеструкцию антрацита изучено на образце А4, импрегнированном КОН. Начало выделения ЛОП из исходного антрацита регистрируется при 420±5°С (рис. 1). В присутствии щелочи образование ЛОП заметно в интервале 300-340°C, что обусловлено вкладом термоинициируемых реакций щелочной деструкции. Выход ЛОП не сильно зависит от содержания щелочи при R_{кон}=2-20 ммоль/г (рис. 1), но всегда выше выходов при термодеструкции исходного антрацита. Основное повышение выхода ЛОП осуществляется при соотношениях R_{кон}≤2 ммоль/г (рис. 2) и эта закономерность выполняется для всех исследованных антрацитов. Эффективная энергия активации Е_{эф}, рассчитанная методом [10] для соединений «антрацит-КОН(2)» в 1,5-2,3 раза ниже значений Е_{эф} для исходных углей (табл. 1).

Рис. 1. Температурные зависимости выходов летучих продуктов антрацита А4 (1) и соединений «А4–КОН(2)» (2) и «А4–КОН(20)» (3)

Рис. 2. Зависимости выходов летучих продуктов термолиза соединений «А4–КОН» от соотношения КОН/уголь при 400°С (1), 450°С (2) и 500°С (3)

Увеличение количества КОН в 10 раз (с 2 до 20 ммоль/г) повышает выход ЛОП, но всего лишь в 1,3–2,0 раза. Близкий к линейному рост значений Δm с ростом R_{KOH} от 5 ммоль/г до 20 ммоль/г является, вероятнее всего, следствием структурной реорганизации на стадии импрегнирования [9]. Можно постулировать, что ос-

новной каталитический эффект щелочей проявляется при соотношениях R_{МОН}≤2 ммоль/г, что принято нами для изучения влияния МОН на скорость термолиза органического вещества антрацитов.

На рис. 3 приведены примеры ДТГ-кривых некоторых соединений «антрацит—MOH(2)». Независимо от природы исходного антрацита и щелочи выделяются две температурные области выхода летучих продуктов.

Первая область (≤200 °С) определяется термической дегидратацией. Для исходного антрацита A1 и соединений с LiOH и NaOH процесс описывается одним пиком на зависимостях ω_m-t_r: максимумы скоростей ω_m соответствуют температурам 82°С(А1), 82°С («А1-LiOH(2)») и 86ºС («А1-NaOH(2)»). Дегидратация соединения «А1-КОН» характеризуется двумя максимумами скорости ω_m при 90°С и 144°С, а дегидратация соединений с RbOH и CsOH - тремя максимумами при 88°С, 138°С, 158°С для «А1-RbOH(2)» и 92°С, 140°С, 160°С для «А1-СsOH(2)». Для всех антрацитов наблюдается качественно одинаковая картина выделения воды; отличаются только численные значения параметра ω_m и положение максимума на температурной шкале (в пределах ±6°С).

Рис. 3. Температурные зависимости скорости потери веса ω_m антрацитом A1 (1) и соединениями «A1–LiOH(2)» (2), «A1–KOH(2)» (3), «A1–CsOH(2)» (4)

Таблица 1

Эффективные энергии активации термолиза антрацитов и соединений «антрацит-КОН(2)»

Образец	Энергия активации для антрацитов (кДж/моль)						
	A1	A2	A3	A4	A5		
Антрацит	230±50	230±50	240±50	250±60	250±60		
Антрацит-КОН(2)	100±15	110±20	145±20	150±30	170±40		

Thermolysis of anthracites with alkali metal hydroxides

Низкотемпературные (<100°С) пики дегидратации относятся к H₂O, связанной только с антрацитовой решеткой. Это вода, адсорбированная на поверхности антрацита и ассоциированная с О- и S-атомами функциональных групп. Появление в угле LiOH или NaOH после импрегнирования почти не меняет прочность связи молекул H₂O с антрацитовым каркасом. КОН вызывает смещение первого пика с 82°C к 117°C и появление более прочно связанной воды, отвечающей максимуму ω_m при 147⁰С. У соединений с RbOH и CsOH наблюдается как минимум три разных вида воды, отличающиеся прочностью связи с угольным каркасом. Можно предположить, что в импрегнированных антрацитах H₂O ассоциирована с: (1) органическим угольным веществом, (2) молекулами МОН и (3) внутрикаркасными комплексами катиона с р-системой угольного полиарена [M⁺...ē...C[•]_n(OH)], формирование которых при импрегнировании гидроксидами щелочных металлов предложено в работе [9]. Причины отмеченных различий при использовании разных щелочей не ясны. Одинаковые для всех образцов условия импрегнирования не гарантируют однородность распределения МОН в объеме угля и идентичность структуры комплексов. Также не определена значимость эффектов дегидратации для формирования каркаса АУ в условиях щелочной активации, поскольку подтверждающие это экспериментальные факты пока отсутствуют.

Потеря массы во второй области ($\geq 250^{\circ}$ C) вызвана удалением летучих продуктов термолиза и щелочной деструкции, характер которых зависит от природы МОН. Общим является то, что с ростом температуры в интервале 300–500°C выходы и скорости образования ЛОП возрастают для всех щелочей. Вклад термоинициируемой щелочной деструкции антрацита можно оценить разностью скоростей $\Delta \omega_m$, полученной вычитанием ДТГ-кривой исходного угля из ДТГкривой соединения «антрацит-МОН». Изменения параметра $\Delta \omega_m$ для области термодегидратации (≤200[°]C) мы не рассматриваем, поскольку это практически не дает дополнительной информации.

С варьированием гидроксида щелочного металла (при прочих равных условиях) меняется характер термолиза антрацита в области ОТР — основного термического разрушения (рис. 4). При этом параметр $\Delta \omega_m$ показывает следующее:

1. В присутствии МОН скорость образования ЛОП при термолизе угля всегда возрастает, то есть щелочь промотирует термодеструкцию антрацита.

2. При переходе от LiOH к CsOH реакционная способность щелочей возрастает, а максимум величины $\Delta \omega_m$ и начало термодеструкции смещается в область низких температур.

3. Значения параметра Δω_m и каталитическая активность щелочей растут в ряду гидроксидов металлов

LiOH<NaOH<KOH<RbOH<CsOH.

Рассмотрим влияние свойств катиона щелочного металла на характер термолиза соединений «антрацит-МОН». В табл. 2 приведены

Таблица 2

Скорость образования летучих органических продуктов термолиза антрацита А1 и соединений «А1-МОН(2)»

Образец	d _M ,	$P \cdot 10^{3}$,	Скорость $\omega_{\rm m}$ (мг/г·с) при температуре, ⁰ С				
	HM	нм ³	350	400	450	500	
A1	-	-	0	0,010	0,019	0,027	
A1-LiOH	0,136	0,03	0,001	0,016	0,035	0,039	
A1–NaOH	0,196	0,41	0,004	0,030	0,049	0,048	
A1–KOH	0,266	1,33	0,007	0,034	0,052	0,055	
A1–RbOH	0,298	1,98	0,024	0,048	0,050	0,056	
A1–CsOH	0,330	3,34	0,030	0,055	0,057	0,068	

скорости образования ЛОП при термолизе соединений «антрацит—MOH», а также характеристики катионов: диаметр d_M и поляризуемость P [11].

Скорость образования ЛОП, определяемая параметром ω_m , существенно зависит от температуры и размеров катиона. В условиях термолиза при 350°С скорость ω_m резко увеличивается для соединений «A1–RbOH» и «A1–CsOH», что передается линией 1 на рис. 5.

При 400°С скорость ω_m возрастает в ряду катионов более плавно (линия 2) и удовлетворительно передается экспоненциальным корреляционным уравнением ω_m =0,0093exp(5,2813d_M) при R²=0,967. Линейная корреляция для этих данных хуже: ω_m =0,1352d_M+0,0045 (R²=0,892). В области температур 450–500°С зависимости параметра ω_m от диаметра M⁺ описываются линейными корреляционными уравнениями:

ω_m=0,1118d_м+0,0208(R²=0,937) для 450°С,

ω_m=0,1149d_м+0,0254(R²=0,959) для 500⁰С.

Таким образом, при приближении температуры термолиза импрегнированного антрацита к 500°С зависимость скорости ω_m от размера катиона приближается к линейной.

На рис. 6 показаны зависимости скоростей образования летучих продуктов ω_m от другого свойства катиона — поляризуемости. Численные данные аппроксимированы линейными функциями аналогично результатам, полученным для термоинициируемых реакций бурого угля со щелочами. Для области ОТР получены

Рис. 5. Скорость образования летучих продуктов термолиза соединений «A1-MOH(2)» как функция диаметра катиона: (1) – 350°С, (2) – 400°С (3) – 500°С

следующие корреляционные уравнения:

ω_m=9,4P+0,00007 (R²=0,908) для 350°C;
ω_m=11,1P+0,0209 (R²=0,909) для 400°C;
ω_m=5,0P+0,0414 (R²=0,658) для 450°C;
ω_m=7,9P+0,042 (R²=0,941) для 500°C.

Линейность зависимостей ω_m от поляризуемости выполняется лучше, чем для зависимостей $\omega_m - d_M$, особенно в начале области ОТР (350-400°С). Это может свидетельствовать о том, что в этих условиях более значимо образование комплексов «М⁺- π -система полиарена», которое облегчается с ростом поляризуемости катиона.

При повышенных температурах размер катиона может играть следующую роль. С ростом температуры увеличивается скорость «миграции» (диффундирования) молекул МОН в пределах антрацита, что вызывает разупорядочение его пространственного каркаса и повышение доступности внутрикаркасных реакционных центров для щелочного реагирования. Увеличение размеров диффундирующих катионов усиливает эффект структурного разупорядочения, что наиболее заметно в начале области ОТР при 350°С (линия 1 на рис. 5). Можно заключить, что обе рассматриваемые характеристики частиц М⁺ являются значимыми в общей картине термолиза соединений «антрацит-МОН». Это тем более важно в связи с тем, что набор реак-

Рис. 6. Скорость образования летучих продуктов термолиза соединений «А1-МОН(2)» как функция поляризуемости катиона: (1) – 350°С, (2) – 400°С (3) – 500°С

Thermolysis of anthracites with alkali metal hydroxides

ций МОН с органическим угольным веществом в области ОТР создает «эскиз» будущего каркаса нанопористого адсорбента.

Выводы

1. При термопрограммируемом (5 град/мин) нагревании антрацитов (С 94,6-95,6%) и соединений «антрацит-MOH» (где M=Li, Na, K, Rb, C) проявляются две температурные области: 1) термодегидратация (J200°C), 2) образование (>250°C) летучих органических продуктов вследствие термической и щелочной деструкции.

2. Термодегидратация зависит от природы щелочи и проявляется пиками при 82–92°С, 138– 147°С и 158–160°С, отнесенными к молекулам воды, ассоциированным с 1) органическим угольным веществом, 2) молекулами МОН и 3) комплексами «М⁺−π-система полиарена».

3. Щелочная термодеструкция с образованием ЛОП наблюдается при $250-500^{\circ}$ С для всех антрацитов, сильно зависит от соотношения МОН/антрацит при $R_{MOH} \le 2$ ммоль/г и возрастает с увеличением размеров и поляризуемости катиона. Для количественной оценки ее вклада предложено использовать разность скоростей $\Delta \omega_m$, определяемую вычитанием ДТГ-кривой исходного антрацита из ДТГ-кривой соединения «антрацит–МОН».

4. Температурные зависимости $\Delta \omega$, ω_m и $\Delta \omega_m$ выявили промотирование деструкции всеми щелочами, понижение начала образования ЛОП (на 50–80°С) и возрастание реакционной способности щелочей в ряду катионов Li⁺<Na⁺<K⁺<Rb⁺<Cs⁺. Увеличение скорости деструкции с увеличением размеров и поляризуемости М⁺ объяснено усилением структурного разупорядочения антрацита и повышением стерической доступности внутрикаркасных реакционных центров.

СПИСОК ЛИТЕРАТУРЫ

1. *Preparation* of activated carbons from Spanish anthracite: I. Activation by KOH / Lozano-Castello D., Lillo-Rodenas M.A., Cazorla-Amoros D., Linares-Solano A. // Carbon. – 2001. – Vol.39. – No. 5. – P.741-749.

2. *NaOH* activation of anthracites: effect of temperature on pore textures and methane storage ability / Perrin A., Celzard A., Albiniak A., Kaczmarczyk J., Mareche J.F., Furdin G.// Carbon. – 2004. – Vol.42. – No. 14. – P.2855-2866.

3. *Nowicki P., Pietrzak R., Wachowska Y*. Siberian anthracite as a precursor material for microporous activated carbons // Fuel. - 2008. - Vol.87. - No. 10-11. - P.2037-2040. 4. *Mikova N.M., Chesnokov N.V., Kuznetsov B.N.* Study of high porous carbons prepared by the alkaline activation of anthracites // Journal of Siberian Federal University. Chemistry. – 2009. – Vol.2. – No. 1. – P.3-10.

5. *Effect* of pore structure on the electrochemical performance of coal-based activated carbons in non-aqueous electrolyte / Zhang C., Zhang R., Xing B., Cheng G., Xie Y., Qiao W., Zhan L., Liang X., Ling L. // New Carbon Materials. – 2010. – Vol.25. – No. 2. – P.129-133.

6. *Highly* porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation / Byamba-Ochir N., Shim W.G., Balathanigaimani M.S., Moon H. // Applied Surface Science. – 2016. – Vol.379. – P.331-337.

7. Кучеренко В.А., Тамаркина Ю.В., Раенко Г.Ф. Влияние гидроксида калия на структуру и развитие поверхности бурого угля при щелочной активации // Хімія, фізика та технологія поверхні. — 2017. — Т.8. — № 2. — С.133-142.

8. *Di Blasi C., Branca C., Galgano A.* Influences of potassium hydroxyde on rate and thermicity of wood pyrolysis reactions // Energy & Fuels. – 2017. – Vol.31. – No. 6. – P.6154-6162.

9. Кучеренко В.А., Тамаркина Ю.В., Фролова И.Б. Реорганизация структуры антрацитов при импрегнировании гидроксидами щелочных металлов // Вопр. химии и хим. технологии. – 2017. – № 2. – С.79-85.

10. Скляр М.Г., Шустиков В.И., Вирозуб И.В. Исследование кинетики термического разложения углей // Химия твердого топлива. – 1968. – № 3. – С.22-32.

11. Справочник химика. Под ред. Б.П.Никольского. – М.-Л.: Химия, 1982. – Т.1. – 1072 с.

Поступила в редакцию 13.02.2018

ТЕРМОЛІЗ АНТРАЦИТІВ У ПРИСУТНОСТІ ГІДРОКСИДІВ ЛУЖНИХ МЕТАЛІВ

В.О. Кучеренко, Ю.В. Тамаркіна, І.Б. Фролова

Досліджено термоліз (≤500°С) п'яти антрацитів АН (С 94,6–95,6%), імпрегнованих гідроксидами МОН (M=Li, Na, K, Rb, Cs) при співвідношеннях МОН/АН R_{мон}≤20 ммоль/г. Методом термопрограмованої (5 град/хв, дериватограф OD-103 МОМ) гравіметрії визначено втрату ваги Дт як вихід летких продуктів і швидкості їх утворення w_m. Встановлено, що при нагріванні АН та сполук «АН-МОН» спостерігається термодегідратація (≤200°С) та утворення (>250°С) летких органічних продуктів (ЛОП) у результаті паралельного перебігу термічної та лужної деструкції. Термодегідратація не залежить від типу АН але залежить від МОН та проявляється трьома піками при 82-92°С, 138-147°С і 158-160°С, віднесеними до H₂O асоційованої з: (1) органічною вугільною речовиною, (2) молекулами МОН та (3) комплексами «М⁺- π -система поліарену». Для усіх антрацитів дія МОН спостерігається при 250-500°С (R_{мон}≤2 ммоль/г) і приводить до підвищення виходу ЛОП (з 1% до 5-6%) і зниження ефективної енергії активації (від 230-250 до 110-170 кДж/моль). Для оцінювання внеску лужної термодеструкції запропоновано використовувати різницю швидкостей $\Delta \omega_m = \omega_m (AH-MOH) - \omega_m (AH)$. Отримані дані показали наступне: (1) луг промотує термодеструкцію, (2) максимум величини ω_m та початок утворення ЛОП знижується на 50-80°С, (3) реакційна здатність лугів зростає в ряду LiOH<NaOH<KOH<RbOH<CsOH. Пришвидшення деструкції зі збільшенням розмірів і поляризованості M^+ пояснено посиленням структурного розупорядкування антрациту та підвищенням досяжності внутрішньокаркасних реакційних центрів для лужного реагування.

Ключові слова: антрацит, гідроксид лужного металу, імпрегнування, термоліз, леткі органічні продукти.

THERMOLYSIS OF ANTHRACITES WITH ALKALI METAL HYDROXIDES

V.A. Kucherenko, Yu.V. Tamarkina, I.B. Frolova L.M. Litvinenko Institute of Physical-Organic and Coal Chemistry, Kyiv, Ukraine

The thermolysis (\leq 500°C) of five anthracites ANs (C 94.6-95.6%) impregnated with hydroxides MOH (M=Li, Na, K, Rb, and Cs) at MOH/AN ratios of $R_{MOH} \leq 20$ mmol/g was investigated. Using the thermoprogrammed gravimetry (5 deg/min, OD-103 MOM derivatograph), the weight loss (Δm) was determined as the yield of volatile products and the rate of their formation (ω_m) was estimated. It has been established that the thermal dehydration ($\leq 200^{\circ}C$) and the formation (>250°C) of volatile organic products (VOPs) are observed as a result of parallel thermal and alkaline destruction when heating AN and «AN-MOH» compounds. The thermodehydration does not depend on the AN type, but is influenced by MOH and manifested by three peaks at 82-92°C, 138-147°C and $158-160^{\circ}C$ related to H_2O associated with the following: (1) organic coal substance, (2) MOH molecules, and (3) complexes « M^+ - π -system of polyarene». For all ANs, the effect of MOH is observed at $250-500^{\circ}C$ ($R_{MOH} \le 2 \text{ mmol/g}$) and results in an increase in the VOPs yield (from 1% to 5-6%) and a decrease in the effective activation energy (from 230-250 to 110-170 kJ/mol). It was proposed to estimate the alkaline thermal destruction contribution as the following difference in rates: $\Delta \omega_m = \omega_m (AN - MOH) - \omega_m (AN)$. The obtained data allowed drawing the following conclusions: (1) the alkali promotes thermal destruction, (2) the maximum of $\Delta \omega_m$ value and the beginning of the VOP formation decrease by 50-80°C, and (3) the alkali reactivity increases in the range: LiOH<NaOH<KOH<RbOH<CsOH. The acceleration of destruction with increasing size and polarizability of M^+ was explained by amplification in the anthracite spatial structure disorder and an increase in the availability of intra-framework reaction centers for alkaline reaction.

Keywords: anthracite; alkali metal hydroxide; impregnation; thermolysis; volatile organic products.

REFERENCES

1. Lozano-Castello D., Lillo-Rodenas M.A., Cazorla-Amoros D., Linares-Solano A. Preparation of activated carbons from Spanish anthracite: I. Activation by KOH. *Carbon*, 2001, vol. 39, pp. 741-749.

2. Perrin A., Celzard A., Albiniak A., Kaczmarczyk J., Mareche J.F., Furdin G. NaOH activation of anthracites: effect of temperature on pore textures and methane storage ability. *Carbon*, 2004, vol. 42, pp. 2855-2866.

3. Nowicki P., Pietrzak R., Wachowska Y. Siberian anthracite as a precursor material for microporous activated carbons. *Fuel*, 2008, vol. 87, pp. 2037-2040.

4. Mikova N.M., Chesnokov N.V., Kuznetsov B.N. Study of high porous carbons prepared by the alkaline activation of anthracites. *Journal of Siberian Federal University. Chemistry*, 2009, vol. 2, no. 1, pp. 3-10.

5. Zhang C.-X., Zhang R., Xing B.-L., Cheng G., Xie Y.-B., Qiao W.-M., Zhan L., Liang X.-Y., Ling L.-C. Effect of pore structure on the electrochemical performance of coal-based activated carbons in non-aqueous electrolyte. *New Carbon Materials*, 2010, vol. 25, pp. 129-133.

6. Byamba-Ochir N., Shim W.G., Balathanigaimani M.S., Moon H. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation. *Applied Surface Science*, 2016, vol. 379, pp. 331-337.

7. Kucherenko V.A., Tamarkina Yu.V., Rayenko G.F. Vliyanie gidroxida kaliya na strukturu i razvitie poverkhnosti burogo ugl'ya pri schelochnoi aktivatsii [Influence of potassium hydroxide on the brown coal structure and surface area development under alkali activation]. *Khimiya, Phizyka ta Tekhnologiya Poverkhni*, 2017, vol. 8, no. 2, pp. 133-142. (*in Russian*).

8. Di Blasi C., Branca C., Galgano A. Influences of potassium hydroxyde on rate and thermicity of wood pyrolysis reactions. *Energy & Fuels*, 2017, vol. 31, pp. 6154-6162.

9. Kucherenko V.A., Tamarkina Yu.V., Frolova I.B. Reorganizatsiya struktury antratsitov pri impregnirovanii gidroksidami schelochnyh metallov [Reorganization of anthracites structures under impregnation by alkali metal hydroxides]. *Voprosy Khimii i Khimicheskoi Tekhnologii*, 2017, no. 2, pp. 79-85. (*in Russian*).

10. Sklyar M.G., Shystikov V.I., Vyrozub I.V. Issledovaniye kinetiki termicheskogo razlozheniya uglei [Investigation of thermal destruction of coals]. *Khimiya Tverdogo Topliva*, 1968, no. 3, pp. 22-32. (*in Russian*).

11. Nikol'skii B.P., *Spravochnik khimika* [Chemical handbook]. Khimiya, Moscow, 1982, vol. 1, pp. 382-383. (*in Russian*).